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INTRODUCTION 
 
The American Cancer Society estimated that there would be approximately 230,110 new cases 
diagnosed and approximately 29,900 prostate cancer related deaths in 2004 (American Cancer 
Society 2004)  Prostate cancer screening today generally uses the Prostate Specific Antigen 
(PSA) blood testing, free PSA testing and Digital Rectal Examination (DRE). When using a 
‘cutoff’ of PSA > 4.0 ng/mL and an abnormal DRE, sensitivity, specificity and Positive Predictive 
Value (PPV) are 38%, 88% and 56% respectively (Crawford, Leewansangtong et al. 1999). 
When either an elevated PSA or an abnormal DRE are used, (in isolation – not in combination), 
sensitivity, specificity and PPV are even lower (Crawford, Leewansangtong et al. 1999). When 
the PSA is used there exists a significant gray area (4 - 10 ng/mL) in which cancers may be 
missed and yet the number of negative biopsies is large. Even though cancer detection 
sensitivity, specificity and PPV are improved by combining PSA and DRE (Toubert, Schlageter 
et al. 1990; Crawford, Leewansangtong et al. 1999) the usefulness of DRE remains 
fundamentally limited due to its subjective nature. Additionally, DRE is practically limited to the 
detection of shallow (subcapsular) palpable abnormalities. Even systematic multi-core biopsy 
fails to detect clinically detectable cancers in up to 34% of men (Frauscher, Klauser et al. 2001). 
However, there is evidence that as additional biopsies cores are added, sensitivity improves 
(Taylor, Gancarczyk et al. 2002). This observation has resulted in an increase the number of 
cores taken during routine examination. Nevertheless, biopsy-based detection sensitivity 
remains less than ideal. Thus, there is plenty of compelling clinical interest in finding improved 
methods for the early diagnosis of prostate cancer with improved sensitivity and specificity. One 
recent example of progress in the field of prostate cancer detection involves an effort to 
automate the DRE examination. Savazyan recently described a system for 'mechanical imaging' 
of the prostate (Sarvazyan 1998). This system comprises a rectal probe that is instrumented 
with an array of pressure sensing strain gages and a 3D magnetic positioner device. In an in 
vitro trial (Weiss, Hartanto et al. 2001), the new system correctly detected and located 100% of 
the nodules under examination. This compares with detection rates of 83% and 67% for an 
experienced urologist and a student respectively. Thus, a significant improvement over the 
conventional DRE examination has been demonstrated for the in vitro case. Another recent 
development is the observation that the sensitivity of an ultrasound examination can be 
improved by the use of a microbubble based contrast agents (Frauscher, Klauser et al. 2001). 
Frauscher's approach (Frauscher, Klauser et al. 2001) involved the use of contrast agent 
enhanced Color Doppler that improved the detection of hypervascular regions associated 
cancer. Prostate cancer was detected by contrast agent assisted ultrasound in 23 of 24 patients 
known to have prostate cancer. (The method used for determining definitively which patients 
had cancer is not entirely clear in the article.) In comparison, conventional ultrasound detected 
cancer in 17 patients. The contrast agent assisted approach detected cancer in 8 patients with a 
negative systematic biopsy-based diagnosis. However, the cost of the contrast agent used in 
this study was $65 per patient. This cost makes up approximately half of the cost of a 
conventional ultrasound examination and therefore represents a considerable impediment to its 
widespread acceptance. However, more recent publications (Clements 2002; Halpern, McCue 
et al. 2002) (including one from Frauscher's group) cast doubt on the true extent of the 
improvement in diagnostic accuracy obtained by using contrast agents. Specifically, Halpern 
was unable to detect cancers in the inner gland and achieved a cancer detection sensitivity of 
only 42% (Halpern, McCue et al. 2002). 
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BODY 
 
The work conducted as part of this Army funded program can be considered as divided into the following 
key “Aims”: 

1. Research, design, development and prototype testing of a new transrectal ultrasound transducer, 
syringe pump and ultrasound instrumentation to facilitate a Synthetic Digital Rectal Examination 
(SDRE). 

2. Research, development and prototype testing of techniques to enable quantitative (dimensionally 
accurate) 3D reconstructions of the prostate 

3. Research, development and test of techniques to improve ultrasound image quality and to 
facilitate automated (or semi-automated) border detection of lesions 

4. Small scale clinical test at the University of Virginia 
 
Progress has been made in each of these tasks in the third year of the grant. 
 
Progress with respect to the areas are related directly to the committed Statement of Work that was 
funded: 
 
Aim 1. Design, specify, and have built, a high resolution transducer optimized for 
imaging elastic inhomogeneities, unsurpassed B-Mode image resolution and possessing 
integrated 3D capability. 
A high frequency (8-14 MHz) transducer array was designed and specified in Year 1. In 2005, 
the transducer was manufactured and delivered by Vermon SA, Tours, France. This specialized 
ultrasound transducer has two tracking arrays each with 32 elements, a central imaging array 
with 192 elements and the elements are spaced on a 0.2 mm pitch. This transducer is providing 
superb imaging resolution in a transducer housing specially designed for transrectal ultrasound. 
The transducer has provided the high quality raw ultrasound data as a basis for the subsequent 
work elements. This transducer is operable at up to 14MHz whereas the previously available 
transducer was only operable up to 8 MHz. Consequently, we obtain excellent, and significantly 
improved, image resolution. 
 
Aim 2. Develop and test a tissue elasticity imaging system.  
We assembled the apparatus to enable the new approach to transrectal ultrasound based strain 
imaging in Year 1 and Year 2. We have also made several custom prostate phantoms using 
locally developed techniques (Negron, Viola et al. 2002). Using internally made phantoms, we 
have been able to iterate efficiently the design and also to fabricate replacement phantoms at 
low cost in a timely manner. Phantoms generally deteriorate over time due to dehydration 
through the membranes. We have tested the tissue elasticity system using both an older 8 MHz 
transrectal transducer and the newer 14 MHz transducer connected to our Siemens Sequoia 
ultrasound machine. (Our techniques can be migrated to other ultrasound systems if resource 
and contractual issues are addressed.) 
 
We spent a considerable portion of Year 3 working on improved algorithms for 3D elastography 
and image processing. This is described below: 
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Multi-resolution hybrid strain estimator 
Time delay estimation has been extensively reported in the literature as an effective method to 
estimate blood flow (Kasai et al. 1985) and tissue motion (Chen et al. 1992). In the field of 
elastography, O’Donnell et al. (1994)) have used the zero-crossing of the phase of the complex 
cross correlation function (base band signal) to estimate tissue strain, whereas Konofagou et al. 
(2000a) have used shift in the power spectrum of the pre- and post-compression echo RF signal 
to estimate tissue strain. Bilgen (1999) has reported a wavelet based direct strain estimator (no 
gradient operation) for elastography. In this section, we describe a multistage hybrid adaptive 
displacement (and strain) estimation algorithm. Figure 1 illustrates the complete flow chart of 
this strain estimation algorithm, which is elaborated in the following paragraphs. In strain 
estimation, cross-correlation between pre- and post-compression signals is maximized when 
two signals are jointly stationary. In addition, if the time-bandwidth product is large and the shifts 
in the signal are small, cross-correlation is an efficient estimator of displacement (hence strain) 
and in the limit achieves the Cramer-Rao lower bound on variance (Walker and Trahey 1995). 
However, in practice, pre- and post-compression signals are jointly non-stationary. Hence, 
signal companding (Chaturvedi at al. 1999) or stretching (Céspedes and Ophir 1993) is 
frequently used to improve image quality. However, for global stretching to be effective, an a 
priori estimate of applied tissue strain is required. In conventional elastography, a calibrated and 
computer controlled motion stage is used to apply an external displacement, it accurately 
determines the applied displacement at the top surface of the object being compressed due to 
uniform compression. Hence, the applied strain at the top of the compressed object is known a 
priori. In hand-held and trans-rectal prostate elastography, applied displacement cannot be 
guessed a priori as the applied compressions are not calibrated or controlled. In addition, the 
strain induced in the compressed object decays or attenuates with depth, and is governed by 
non- uniform1 boundary conditions. 

                                                           
1 When the compressor plate is smaller in dimension than that of the compressed homogeneous object, the stress distribution in the object is 

non-uniform and is referred to as non-uniform boundary condition at the object boundary (Shapo et al. 1996,). 
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Figure 1: Flow chart of the new strain estimation algorithm. Note: dotted lined-
rectangular boxes denote first-stage (I), whereas, dashed lined-rectangular boxes signify 
second-stage (II), and solid lined-rectangular boxes represent third-stage (III). 
 
Hence, uniform global stretching in the first stage of any adaptive strain estimation algorithm 
(Srinivasan et al. 2002b) may produce sub-optimal results. Also, when applied strain is large (> 
2%, for a ~4 cm deep prostate tissue imaged at 12 MHz), the induced displacement is 
sufficiently larger than the wavelength corresponding to center frequency and may introduce 
ambiguity in peak detection of the cross-correlation function obtained by tracking the pre- and 
post-compression RF data. Hence, in the first stage of our algorithm, we demodulate the RF 
data and track the envelope of the pre- and post-compression echo RF frames to yield average 
”first-guess” strain estimates over the tracking window-W. The window, W, is the spatial length 
of the kernel over which the pre- and the post-compression signal cross-correlation is carried 
out. The window in this stage is larger than in the subsequent RF tracking stages to obtain 
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estimates with higher SNR. The displacement obtained from this stage is referred to as the first 
stage axial displacement (1Da), where superscript ‘1’ denotes the stage and subscript ‘a’ 
denotes the displacement type (axial 

In the second stage, a polynomial curve2 is fitted to the estimated local strain profile over 
an A-line, and the corresponding A-line is stretched by the curve-fitted first-stage strain. 
Srinivasan et al. (2002b) stretched the post-compression data globally by the average applied 
strain, whereas Chaturvedi et al. (1999) compressed the pre-compression data by the average 
tissue strain. In either case, the first stage did not take into account the local variations in tissue 
contrast. In addition, both algorithms require an a priori estimate of the applied strain. In the 
proposed algorithm, signal stretching is performed locally over a tracking window on every A-
line, taking account of the local variation in tissue elasticity without any a priori knowledge of the 
applied tissue strain. Lateral displacement (2Dl) is estimated by performing lateral tracking 
(Konofagou et al. 2000b). The pre- and the stretched post-compression echo RF data are then 
tracked to yield a local strain estimate over the search window. The axial displacement 
estimated in this stage is added to the first stage axial displacement and the resultant axial 
displacement is referred to as the second stage axial displacement (2Da).  
  The third stage is used to estimate residual strain. In the third stage, the original un-stretched 
post-compression RF data are stretched locally over a tracking window using the estimated 
second-stage strain. The stretched post-compression data are then tracked with the pre-
compression data to yield residual axial displacements. The lateral displacements are obtained 
by tracking the A-lines laterally. When performing lateral tracking, the search window in the pre-
compression data is tracked with the corresponding window on adjacent A-lines in the post-
compression data. The maximum cross-correlation coefficients over these windows are 
estimated and a cosine curve (cosine interpolation) (Céspedes and Ophir 1993) is fitted to the 
data points. The shift in the peak of this curve in the transverse (lateral or azimuthal) direction 
yields the lateral displacement of the local post-compression window. The axial and lateral 
displacements estimated in this stage are added to the second stage axial and lateral 
displacement to yield the final axial (3Da), and lateral displacements (3Dl). The gradient of the 
axial displacement image yields a strain image, but gradient operator is a high pass operator 
and amplifies noise. A least square estimator may be applied to a displacement image to 
produce a smooth elastogram, but the losses in tissue contrast and resolution may be 
substantial (Kallel and Ophir 1997). A staggered strain operator (Srinivasan et al. 2002a) limits 
noise amplification and provides smooth elastograms while minimizing the loss in contrast and 
resolution. Hence, in the last step of this algorithm, we apply staggered strain estimation 
technique to the final stage axial displacement image to generate a final stage elastogram. In 
principle, the staggering estimator performs a band-pass filtering operation partially mitigating 
the noise-enhancing effect of the high pass filtering resulting from the gradient operator.  
 

                                                           
2 The estimated first stage strain profile is interpolated using cosine interpolation to match the sampling rate of the RF data.  
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3D Elastographic simulation framework 
 
An elastographic simulation framework similar to that proposed by Nightingale et al. (2000) and 
Patil et al. (2006) was used to in this work. Patil et al. had used a 3D shift-invariant convolution 
model for generating the pre- and post compression echo RF data. In this work, we have used a 
more realistic Field II simulation model (Jensen and Nikolov 2000) for echo RF data generation. 
Most FEA simulations performed by Patil et al. were restricted by the assumption of uniform 
boundary conditions, which is not strictly valid for transrectal prostate elastography. In this work, 
all FEA simulations were performed with non-uniform boundary conditions. Figure 2 illustrates 
the flow diagram of the simulation framework used in this work. ANSYS (Canonsburg, PA), a 
finite element analysis (FEA) simulation software package, was used in this work. Arbitrary 
regions of interest (ROI’s) can be created within the FEA model by changing the local material 
properties (shear modulus, material density etc.). A fine FEA mesh (approximately 13 FEA 
nodes per resolution cell) results in accurate parameter estimation (3D internal displacement, in 
this case). Boundary conditions (applied displacement) can be applied to an object surface, an 
object element, or a node of the object element (after meshing). The internal object deformation 
due to the applied displacement is then estimated by solving the associated partial differential 
equations numerically. In this work, a preconditioned conjugate gradient iterative solver was 
chosen to perform numerical simulations (Elman 1981). This solver was chosen because it 
provided similar performance as compared with the other solvers (within ANSYS) at a relatively 
small computational time (Patil 2005). A grid of scatterers was defined over the 3D ROI of the 
simulated object (48 scatterers per resolution cell (Walker 2006)). The post-compression 
scatterer position was simulated by applying the 3D displacement field obtained from the FEA 
software to the scatterers. 
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Figure 2: 3D elastographic simulation framework . 

It is worthwhile noting that the FEA simulations accounted not only for translational but also for 
rotational motion of an object due to any arbitrary boundary condition. Thus, realistic tissue 
motions can be simulated for arbitrary boundary conditions and arbitrary object shapes. Field II 
simulations were used to generate the pre- and post-compression echo RF data. The generated 
pre- and post-compression data can be tracked using different displacement (strain) estimation 
algorithms to generate a strain image. In this work, we used the strain estimation (signal 
processing) algorithm detailed in section 2.  
 

Performance evaluation of the strain estimator using 3D elastographic simulations and 
experiments 
 

A. Simulations 
 
Elastographic simulations were performed using the framework described in section 3.  Table 1 
lists the simulation parameters used for performing various simulations described in this section. 
Table 1 Simulation parameters . 
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Entity Value 
Dimensions of background 40x40x40 mm cube
Modulus ratio of inclusion and  background 3
Approximate diameter of the inclusion 10 mm
Center frequency of scan 12 MHz
Sampling frequency 80 MHz
System SNR 30 dB
1D linear array 192 elements, 0.2 mm 

pitch
Focus 20 mm
Fractional bandwidth 40%
Window length (W) 2 mm
Overlap 90% 

 
A cube (40 x 40 x 40 mm) enclosing a spiculated inclusion (10 mm diameter) was used as a 
mechanical model to simulate the background and the lesion (Figure 3). The embedded 
inclusion (Young’s Modulus=12 KPa) was simulated to be three times stiffer than the 
background (Young’s Modulus=4 KPa). A uniform cube was used for the SNR study. The cubes 
were compressed axially from the top and assumed to be rested on a fixed surface such that 
their motions in the lateral and elevational directions were unconstrained (slip conditions). The 
cubes were compressed along the elevational axis of symmetry using a compressor plate (40 x 
3 mm- lateral elevation plane) and the transducer array was placed over the compressor plate. 
The surface area of the compressor plate was smaller than the surface area of the top of the 
cube to simulate non-uniform boundary conditions at the top surface of the cube (Figure 3). This 
results in non-uniform stress distribution through the depth of the tissue and consequently 
causes strain decay. The cube was subjected to a range of applied strain (0.5-10%). ANSYS 
was used to perform these simulations. The transducer was focused at 20 mm (range or axial 
direction). RF data were generated using the 3D elastographic simulation framework as 
described in section 3  

 
Figure 3: Schematic of the simulated phantom and imaging array used for CNRe study. 
The cube is 40x40x40 mm and the compressor plate is 40x 3 mm. 
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The generated pre- and post-compression RF data were tracked using: 1) the proposed 
algorithm, 2) the algorithm proposed by Srinivasan et al. (2002b), and c) 1D RF data tracking 
using uniform global stretching (Céspedes and Ophir 1993). Signal-to-noise ratio (O’Donnell et 
al. 1994) and contrast-to-noise ratio (Bilgen and Insana 1997) were used as metrics for 
comparing the above listed tracking algorithms. Figures 4 through 7 illustrate the first, second 
and final stage elastograms obtained using the proposed algorithm. Figure 8 illustrates the 
numerical strain image obtained from 3D FEA simulation 
 
 

  
Figure 4: First stage elastogram (Left) and axial displacement image 
(Right). The field of view is 40x40 mm. The images were obtained 
using parameters specified in Table 1. 

Figure 5: Strain profile over an 
A-line in the elastogram (Figure 
4-Left) obtained by the B-mode 
tracking. 

  
Figure 6: Second stage elastogram (Left), axial displacement image (Center), lateral displacement 
image (Right). The field of view is 40x40 mm. The images were obtained using parameters specified in 
Table 1. 
 

  
Figure 7: Final stage elastogram (Left), axial displacement image (Center), lateral displacement image 
(Right). The field of view is 40x40 mm. The images were obtained using parameters specified in Table 



 
 

12

1. 
 
 

Figure 8: Ideal strain image obtained from 
the FEA simulations. The image was 
obtained using non-uniform boundary 
conditions, other mechanical parameters 
used in FEA simulations are listed in Table 
1. 

 
 
Figure 9 illustrates the theoretical elastographic SNR (SNRe) plot obtained using the 
specifications of the simulated transducer and the aforementioned signal processing 
parameters. The theoretical framework proposed by Varghese and Ophir (1997) was used for 
generating the theoretical SNRe curve plot. It is important to note that the theoretical SNRe 
curve: 1) assumes one dimensional speckle motion, and 2) joint stationarity of pre- and post-
compression signals, 3) neglects frequency dependent attenuation and 4) assumes that the 
observation window is at the focus of the transducer. In view of these assumptions, the 
theoretical SNRe can never be achieved in practice. Nevertheless, the theoretical SNRe plot can 
be used as a “gold standard” to evaluate the performance of any strain estimation algorithm. 
Figure 10 illustrates the signal-to-noise curves estimated using the proposed algorithm and the 
above listed tracking approaches. Equation (1) was used to estimate the elastographic signal-
to-noise ratio (SNR ) from the reconstructed elastograms (O’Donnell et al. 1994), e 

s
e

sSNR
σ

=
(1) 

 

where s is the average strain estimated over the entire image. σs is the variance of strain 
estimates. The SNRe curve estimated using the proposed algorithm envelopes the SNRe curves 
obtained using the global stretching-based RF data tracking algorithm and the algorithm by 
Srinivasan et al. (2002b). For all values of applied strain, the SNRe plot obtained from the 
proposed algorithm was statistically different (p < 0.05) from the one obtained using the 
algorithm proposed by Srinivasan et al. (2002b). Analysis of variance was used as a statistical 
measure for quantifying the differences between the two SNRe curves. Thirty independent 
realizations were used for the statistical study. Figure 11 illustrates the image variance 
estimated at different values of applied strain. As predicted using strain filter theory (Varghese 
and Ophir 1997), the variances in strain estimation increase non-linearly with applied strain. The 
rate of increase in variance is lowest when using the proposed algorithm. Figure 12 illustrates 
the average cross-correlation coefficient (ρ) over the image obtained using different tracking 
algorithms. The cross-correlation coefficient obtained by tracking the pre- and the post-
compression signal can be expressed analytically as: 
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 denotes pre-compression and Subscript p s denotes post-compression (O’Donnell et al. 1994). 
 is the tracking window (T W= T*c/2); c is the speed of sound through the tissue. ρps is the cross-

correlation coefficient. The error bars in Figure 12 illustrate the variance in the average image 
cross-correlation coefficient obtained from thirty independent realizations. The rate of decrease 
in the correlation coefficient as a function of applied strain is smallest for the proposed 
algorithm. Figure 13 illustrates different contrast-to-noise ratio curves- CNRe (Bilgen and Insana 
1997) obtained from the elastograms simulated using different strain estimation algorithms. 
Contrast-to-noise ratio is expressed as,  

(6) 
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=

 
where, st is the average strain in the target, and sb is the average strain of the background. σ2

t is 
the variance of the strain estimates in the target, and σ2

b is the variance of the strain estimates 
in the background. CNRe values for a range of applied strain (0.5-10%) obtained using the 
proposed algorithm are 3 dB above the CNRe curve obtained using the algorithm proposed by 
Srinivasan et al.(2002b) and are 6 dB higher than the RF data tracking algorithm with uniform 
global stretching (Céspedes and Ophir 1993). 

 
Figure 9: Theoretical SNRe plot for a range of applied strains. The plot was obtained at 12 
MHz center frequency, 40 % fractional bandwidth (-6 dB), system SNR of 30 dB, window 
length of 2 mm and overlap of 90 %. 
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 Figure 10: SNRe plots comparing proposed 
algorithm with uniform global stretching 
only (Céspedes and Ophir 1993), and global 
followed by local stretching approaches 
(Srinivasan et al. 2002b). 

 Figure 11: Estimated image variance 
comparing proposed algorithm with 
uniform global stretching only (Céspedes 
and Ophir 1993), and global followed by 
local stretching approaches (Srinivasan et 
al. 2002b). 

Figure 12: Average cross-correlation 
coefficient over the reconstructed image 
obtained using proposed algorithm, 
algorithm with uniform global stretching 
only (Céspedes and Ophir 1993), and global 
followed by local stretching approaches 
(Srinivasan et al. 2002b). 

Figure 13: CNRe ratio plots obtained using 
proposed algorithm, algorithm with 
uniform global stretching only (Céspedes 
and Ophir 1993), and global followed by 
local stretching approaches (Srinivasan et 
al. 2002b). 



 
 

15

B.  Experiments 
 
Experimental evaluation of the tracking algorithm was performed on an acryl-amide based 
prostate phantom previously fabricated by (Li et al. 2005). The mean cross-sectional diameter of 
the embedded oblong inclusion in the longitudinal (range) direction was approximately 7 mm. A 
Siemens Sequoia 512 scanner (Siemens Medical Solutions, Mountain View, CA) was used in 
this study. Multiple demodulated “I/Q” (In-phase/Quadrature) radio frequency beamformed lines 
of acoustic data were acquired from the ultrasound scanner using a research interface 
employing an I/Q data capture board. A 192 element, 12 MHz, -6 dB 40 % fractional-bandwidth 
transrectal ultrasound transducer was used for scanning the prostate phantom. The depth of 
acquisition was 24 mm and the width of acquisition was 40 mm. The experimental apparatus 
and the protocols used for the validation are described in (Li et al. 2005) and will be reiterated in 
detail in the phantom experiment section (Section 6). Fifty frames were acquired such that the 
total applied strain over 50 frames was 2 %. Every 25th frame (1 and 25-E1, 25, 2 and 26-E2, 26 
and so on...) was tracked. Final elastogram was generated by averaging over five independently 
obtained elastograms ((E1, 25 +.....+ E5, 29)/5) Figure 14a illustrates an elastogram obtained using 
the method proposed in this paper. Figure 14b illustrates an elastogram reconstructed by using 
the algorithm proposed by Srinivasan et al. in (2002b). As illustrated in Figures 14a and 14b, 
elastograms generated by the algorithm proposed in this paper provide higher CNRe and retain 
the shape of the enclosed inclusion. The depth dependent strain attenuation is clearly visible in 
the elastograms in Figures 14a and 14b. Thus uniform global stretching over the entire image 
as suggested in the first stage of the algorithm by Srinivasan et al. (2002b) results in stretching 
inaccuracies and is a likely cause of the noise observed in Figure 14b. The algorithm proposed 
in this paper stretches every A-line by the local strain profile over that A-line as predicted by the 
B-mode tracking stage (the first stage of the proposed algorithm). Also, the stretching takes into 
account the strain decay with depth and hence minimizes noise due to stretching inaccuracies, 
which are likely to occur due to tissue inhomogeneity. The algorithm by Srinivasan et al. (2002b) 
requires an a priori estimate of the applied strain for stretching the post-compression data, 
whereas the algorithm proposed in this paper does not have such a requirement. Thus, for 
trans-rectal, and handheld elastography, the proposed algorithm is expected to exhibit superior 
performance to algorithm proposed by Srinivasan et al. (2002b). For the case with uniform 
boundary condition (as in motion stage based elastography, where the applied strain is known a 
priori), we expect that both algorithms should demonstrate similar performance. 
 

 
 
Figure 14a The modulus contrast ratio of the 
inclusion in the image with respect to the 
background was 10. A window length of 2 

a
)

 
Figure 14b: The modulus contrast ratio of 
the inclusion in the image with respect to 

b
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mm and an overlap of 90 % were used for 
processing the elastogram. The obtained 
elastogram is an average strain image over 
5 frames. The elastogram was reconstructed 
using the proposed algorithm. 

the background was 10. A window length of 
2 mm and an overlap of 90 % were used for 
processing the elastogram. The obtained 
elastogram is an average strain image over 
5 frames. The elastogram was by 
reconstructed using the algorithm proposed 
by Srinivasan et al. (2002b). 
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1. Rendering 3D shapes of embedded inclusions :Simulations 
 
3D elastographic simulations framework described in section 3 was used for 3D shape 
rendering study. Two different cases were considered for the 3D rendering study- the axial and 
the lateral resolution study (Figure 15). The transducer array (Field II) was swept across (along 
elevation) the inclusions to generate elastograms by 3D rendering. The spiculated inclusion 
models a malignant lesion, whereas the smooth spherical inclusion models a benign lesion 
(Ueno 1986, Lee 1988). In the model shown in Figure 15, the background was simulated as a 
40x40x40 mm cube with uniform density and stiffness of 4 KPa The inclusion was three times 
as stiff as the surrounding background. The spherical inclusion had a cross-sectional diameter 
of 5 mm; whereas the spiculated malignant inclusion had a mean cross-sectional diameter of 
approximately 6 mm. External displacement was applied to the top surface of the cube as 
illustrated in Figure 15. Parameters listed in Table 1 were used to for simulations described in 
this section. The simulated transducer was slowly swept across the top surface of the cube and 
twenty three pre- and post-compression RF data slices were collected along the elevational 
dimension. The acquired pre- and post-compression RF data sets were tracked using the 
algorithm detailed in section 2. Various elastograms obtained along the elevational direction 
were segmented using 3D gradient vector flow active surface (GVF-AS) algorithm (Tay et al. 
2006) and rendered in 3D to reconstruct the 3D shapes of the inclusions. The strain images 
obtained directly from the FEA simulations were also segmented and rendered to produce ideal 
3D shapes of the modeled inclusions. Figure 16 illustrates the 3D reconstruction from the axial 
resolution study. The modeled malignant and benign lesions were embedded in the 3D cube 
and were placed longitudinally along the axis of symmetry. The axial separation between the 
two lesions was reduced in incremental steps of 0.1 mm. For every step, the lesions were 
reconstructed from the elastograms and rendered in 3D. The process was repeated until the 
lesions were close enough to each other such that their reconstruction resulted in one fused 
entity instead of two distinct entities. The axial resolution of the 3D reconstruction was 
approximately 0.8 mm (five wavelengths). Figure 16-a illustrates a 3D reconstruction from the 
generated elastograms, whereas Figure 16-b illustrates a  3D reconstruction from the ideal 
numerical strain images obtained from the FEA simulations. As expected, the 3D reconstruction 
from ideal images is sharper than that from the elastogram. Also, the lesions reconstructed from 
the elastogram exhibit shape warping that can be attributed to limitations arising from the signal 
processing parameters (window length and window overlap etc.), and the non-uniformity of the 
sampling of the ultrasound data in the three dimensions (Patil et al. 2006). Lateral resolution of 
the 3D reconstruction was estimated by repeating the steps detailed for the axial resolution 
study. The lateral resolution of the 3D reconstruction was approximately 1.5 mm (ten 
wavelengths). Figures 17 a-b illustrate a 3D reconstruction from the lateral resolution study 
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Figure 15: The above figures illustrate the two different simulation cases considered for 
the 3D rendering study. The arbitrary shaped inclusion models a malignant lesion, 
whereas the smooth spherical inclusion models a benign lesion (Ueno 1986, Lee 1988). 
The cases a and b were considered to evaluate the axial and the lateral resolution of the 
3D reconstruction.      

a b
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Figure 16: Axial resolution simulation study: (a) 3D reconstruction from the 
reconstructed elastograms, (b) 3D reconstruction from the numerical strain images 
derived from the FEA simulations 

(mm) 
b) a) 



 
 

20

 Azimuth 
 (mm) 

Range 
(mm) 

Elevation 

 
(mm) 

a) 
 
 

Elevation  
(mm) 

Range 
(mm) 

Azimuth  
 (mm) 
 
 
Figure 17: Lateral resolution simulation study: (a) 3D reconstruction from the 
reconstructed elastograms, (b) 3D reconstruction from numerical strain images 
derived from the FEA simulations. 
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2.  Elastographic phantom experiments for 3D rendering study 
 

A.  A purpose built prostate phantom 
 
The acrylamide-based prostate phantom was fabricated using the protocol published by Negron 
et al. (2002). The prostate phantom consisted of three compartments - the prostate tissue with 
embedded inclusion, the anal passage, and the surrounding viscera. A schematic of the 
constructed phantom is illustrated in Figure 18, whereas Figure 19 illustrates a photographic 
view of the prostate phantom. 

 
Figure 18: Schematic representation of the 
prostate phantom. 1: Anal passage, 2: 
Prostate tissue, 3:Viscera 

 
Figure 19: Prostate phantom- a 
photographic view. 

 
The prostate material and the surrounding gel (viscera) were composed of a 4% acrylamide 
solution, while inclusions in the prostates were composed of 8% acrylamide, which imparted 
different stiffness to the lesion and the surrounding prostate tissue. The Young’s modulus for 4 
% gel is approximately 4 KPa, whereas it is 16 KPa (Konofagou et al. 2003) in the 8% gel stiff 
inclusions. Thus, the modulus ratio for all embedded lesions was approximately four. Sephadex 
(GE-Amersham, Piscatway, NJ) was added to the prostates and inclusions to give speckle; a 
higher concentration of sephadex was added to the inclusions than the surrounding prostates, 
yielding a different speckle pattern. Two prostates of approximately 100 mL each were included 
in the phantom, one containing a spherical inclusions and the other containing an irregular 
inclusions. The smooth inclusion was approximately 8 mm in diameter whereas the irregular 
shaped inclusion had a mean diameter of 1 cm. To ensure uniform speckle-pattern in inclusions 
and prostate, the mixture of different component solutions was enclosed in a latex balloon and 
was rolled gently for a setting period (approximately 20 minutes following the mixing of 
components) until the solution had gelled. The rolling protocol mitigates against the settling of 
the embedded inclusion and may sometimes lead to a situation where two inclusions are placed 
apposing each other, hence two different prostates were constructed, each embedding one 
inclusion. 
 

B. “ I-Beam” transducer and elastographic phantom experiments 
 
A Siemens Sequoia 512 scanner was used for image acquisition. The prostate phantom was 
scanned using an "I-Beam" type transducer - a modified linear transducer array consisting of a 
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central “imaging” array bordered by two perpendicular “tracking” arrays in a cylindrical housing, 
as illustrated in Figures 20 a-b. Using this configuration, the angular separation between two 
successive image slices could be tracked by measuring the azimuthal motion in the tracking 
arrays (Hossack et al. 2002, Garson et al. 2006). The arrays were operated at 12 MHz, using a -
6 dB fractional bandwidth of approximately 40 %. A small tube for water delivery was attached 
to the transducer housing, and the assembly was surrounded with a water-tight latex transducer 
cover. When acquiring different image slices, the transducer had to be swept at an angle across 
the region of interest (ROI). This assembly was mounted so that during the angular rotation, 
translational motion was restricted, facilitating pure rotational motion of the transducer. The 
mounted transducer was inserted into the prostate phantom and used to perform a series of 
two-dimensional elastographic scans. At every angular position, the phantom was compressed 
by injecting water in the transducer sheath via the connected tube using a syringe pump while 
simultaneously collecting fifty I/Q data frames. For each lesion, gain, field of view, and focal 
depth were optimized for maximum visibility of that particular lesion. The data were processed 
offline as detailed in section 2 to generate elastographic image slices.  

 
 
 

Figure 20: a) Configuration of the modified transducer comprising a central imaging array 
bordered by two perpendicular tracking arrays. During a scan, the transducer is rotated 
about its central axis, as indicated, b) A photographic view of prostate probe with 
tracking and imaging arrays. 
  

C.  Experimental results 
 
Elastographic experiments were conducted as described in sub-section B. Both irregular 
shaped and smooth inclusions were imaged. Sixteen elastographic and sonographic image 
slices were acquired by sweeping the trans-rectal prostate transducer across the spatial extent 
of both inclusions. Figure 21 illustrates elastograms and corresponding sonograms for a few 
angular positions of the trans-rectal prostate transducer while sweeping across the irregular 
shaped inclusion. Figure 22 illustrates similar images for the smooth shaped inclusion. Figure 
23 illustrates images of the smooth lesion reconstructed from sonograms and elastograms, 
respectively. The shape and the size of the smooth inclusion reconstructed from the sonograms 
and elastograms are approximately similar; the smooth inclusion reconstructed from 
elastograms tapers at the longitudinal edges, and is probably due to the low  
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Figure 21: Few slices across the embedded inclusion mimicking a malignant lesion. Top 
row illustrates elastograms, bottom row illustrates sonograms. The field of view is 30 x 30 
mm. 
 

 
 

 

Figure 22: Few slices across the embedded inclusion mimicking a benign lesion. Top 
row illustrates sonograms, bottom row illustrates elastograms. The field of view is 40 x 
30 mm. 



 
 

24

Elevation 
(mm) 

Range 
(mm) 

a) 

 
 Azimuth 

Elevation (mm)  (mm) 

b) Range 
(mm) 

 Azimuth  
(mm)  

Figure 23: a) Smooth inclusion mimicking a benign lesion reconstructed from 
elastograms. b) Smooth inclusion reconstructed from sonograms. 
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pass filtering or smoothing effect of the processing windows used for generating elastograms 
(Srinivasan et al 2002a,). Figure 24 illustrates the irregular shaped lesion reconstructed from the 
elastograms and sonograms, respectively. The shape of the irregular shaped inclusion, when 
reconstructed from the elastograms, has blunt edges and appears larger in size than that 
reconstructed from the sonogram or B-mode image. Similar results have been reported by 
Garra et al. (1997) where the authors demonstrate the same by comparing the sonographic and 
elastographic images for an irregular shaped malignant cancer in in-vivo human scans. Thus, 
we contend that the 3D size and the shape of the reconstructed lesion (inclusion) have the 
potential to assist in discriminating benign cancers from malignant cancers.
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Figure 24: a) Irregular shaped inclusion mimicking a malignant lesion reconstructed from 
elastograms. b) Irregular shaped lesion inclusion reconstructed from sonograms. 
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Discussion 
 
In elastography, image quality is contingent upon accurate estimation of internal tissue 
displacements. Signal companding is a simple, yet elegant, approach of improving 
elastographic image quality. In the second section of this article, we proposed an adaptive 
stretching based tracking algorithm. The algorithm takes into account the local variations in 
tissue elasticity and performs iterative local stretching, which provides a superior CNRe to 
previously proposed adaptive tracking algorithms (Srinivasan et al. 2002b). When encountering 
non-uniform boundary conditions, as in prostate elastography, the proposed algorithm is 
expected to perform better than conventional stretching based algorithms as they require an a 
priori estimate of the applied strain. When using an ultrasound scanner operating at higher 
frame rates with a high bandwidth transducer and performing handheld or trans-rectal prostate 
elastography, the net motion between the consecutive image frames may be small. Thus, the 
correlation-based tracking in the first two stages of this algorithm may be replaced by a sum-of-
absolute-difference approach (Chaturvedi and Insana 1999), whereas the third stage may be 
replaced by temporal tracking of zero crossings (Srinivasan et al.2002b) of the pre- and post-
compression echo RF signals. Thus, a reduction in computation time may be achieved by an 
order of magnitude without any substantial degradation in image quality. Such a modified 
algorithm, when implemented on FPGA’s, can be easily incorporated into programmable 
scanners such as the ULTRASONIX RP (Richmond, BC) and may help in real time tissue 
elasticity imaging. In a PC based environment, real-time image registration and rendering 
algorithms (Tay et al. 2006) may be used to render multiple image slices to accurately 
reconstruct a 3D volumetric elastogram. For this work, the elevational resolution is expected to 
be a function of the greater of the two properties of the data set, the elevational beam width and 
the angular separation between two consecutive slices and intuitively may be assumed to be a 
linear function of depth as the separation between two consecutive slices increases linearly as a 
function of depth. Thus, for detecting and rendering smaller lesions deep in tissue, it may be 
essential to have sufficiently high angular sampling in addition to having a higher image frame 
rate. Nevertheless, such 3D elastography imaging systems may be used for a variety of 
applications such as real-time volumetric monitoring of HIFU lesions (Souchon et al. 2005), real-
time volumetric estimation of viscous properties of tissue using non-linear or sinusoidal 
compression techniques between consecutive image frames thereby imaging the temporal 
behavior of the tissue strain (Erpelding et al. 2005), and temporal monitoring of the growth of 
cancers.
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Aim 3. Apply image processing algorithms to acquired B-Mode and elasticity images to improve 
the quantification of detected elastic inhomogeneities  
 

Image Processing and Quantification 
We have progressed to a accurate 3D surface rendering from 2D slices by implementing a 3D gradient 
vector flow (GVF) snake algorithm (Xu and Prince 1998).  The 2D and 3D GVF snake algorithm relies on 
the edges to be well delineated and contrast between the various regions to be well defined in each 2D 
ultrasound slice to produce a surface that resembles the actual scanned object.  In ultrasound, images 
are affected by a granular interference pattern known as “speckle”.  Before an accurate 3D surface 
rendering can be attained,a preprocessing despeckling step is needed to reduce the variances in pixel 
values within homogeneous regions while contrast between distinct regions are concurrently enhanced.  
We have evaluated a wide variety of well known methods such as the Nagao and Matsuyama filter 
(Nagao and Matsuyama 1979), the Lee filter(Lee 1980), the Frost et al. filter (Frost, Stiles et al. 1982), 
the Kuan et al. filter (Kuan, Sawchuk et al. 1985), the adaptive weighted median filter proposed by 
Loupas et al.(Loupas, McDicken et al. 1989), the Wiener filter (Kailath 1976) SRAD proposed by Yu and 
Acton (Yu and Acton 2002), and a novel stochastically driven method design specifically for 3D surface 
rendering from 2D slices of the prostate and other organs.  The method we develop specifically for the 
task of this grant is a stochastically driven compression filter called the “squeeze box filter” (SBF).  Our 
quantitative evaluation using a Field II (Jensen and Svendsen 1992) simulated B mode ultrasound image 
with contrast enhancement performance determined by a modified Fisher discriminant has determined 
that the newly developed SBF method outperformed the other methods and is exceptional in providing 
the needed intra-region reduction in variance and inter-region contrast enhancement with computational 
efficiency. In Figs. 25, 26, and 27, we show the 3D surface, the side view, and the bottom view, 
respectively, of the rendering we attained from a sequence of scans we acquired of an egg phantom.  
The sequence consists of acquiring a 2D slice every millimeter along the long axis of an egg phantom.  
We processed each slice with the SBF despeckling method.  The 3D rendering was attain by SBF 
processing each slice then applying a 3D GVF snake to attain the final results shown in Fig. 13, 14, and 
15.  It is very evident that our method captured the essential size and shape of the egg phantom.   
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Figure 25.  3D surface found by the 3D GVF with slices preprocessed by SBF. 
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Figure 26.  Side view of the surface rendered by the 3D GVF snake  

with slices preprocessed by SBF. 
 

 
Figure 27.  Bottom view of the surface of the egg phantom  

rendered by the 3D GVF snake with slices preprocessed by SBF. 
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After the 3-D surface of the prostate is segmented, the volume is determined by applying a novel 
blobbing technique, called the multi-directional connected component analysis (MDCCA).  The MDCCA 
requires that the surface, which is represented by a set of 3-D vertices and faces, to be densely meshed 
so that each vertex is no more than one voxel from its neighboring vertices.  A 2-D binary image of the 
contour is defined by the intersection of a plane through the densely mesh surface.  This binary image is 
zero except when the pixel lies on the contour, in which case the pixel is set at one.  The interior 
enclosed by the 2-D close contour is determined by extracting the connected component in several 
directions and applying a logical “and” operator to the resulting binary images.  A connected component 
binary image in some fixed direction is the result of approaching the 2-D closed contour in some fixed 
direction, say left to right in each row or top to bottom in each column for examples, and setting the pixel 
values to zero until a contour pixel is reached, in which case the remaining pixels in the fixed direction 
are set to one.  Fig. 28 shows the connected component binary images in eight directions.  Fig. 29 
shows the result of applying a logical “and” operator to the eight binary images in Fig. 28.  The MDCCA 
of non-intersecting slices through the 3-D densely meshed surface yields a binary 3-D data where the 
voxels are one when the voxel lies within the interior of the 3-D surface and zero otherwise.  An example 
of a binary 3-D data produced by applying the MDCCA to non-intersecting slices is shown in Fig. 30.  
The volume in units of voxels of the object enclosed by the 3-D surface is attained by summing the 
binary 3-D data of MDCCA of non-intersecting slices.  The volume is converted to units of cubic 
centimeter (or millimeter or other units) by multiplying with the voxel resolution.  
 
 

    

    
 

Figure 28.  Connected components in eight directions. 
 

 
 

Figure 29.  Connected components in eight directions. 
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Figure 30.  MDCCA of non-intersecting slices. 
 

 
 
 
Papers of our novel methods have been published in the Proceedings of the 2006 IEEE International 
Symposium for Biomedical Imaging: From Nana to Macro and the Proceedings of the IEEE 
International Conference on Image Processing 2006. A journal papers of our despeckling, surface 
segmentation, and volume calculation (MDCCA) methods have been submitted to Elsevier DSP, 
Elsevier Computerized Medical Imaging and Graphics, and IEEE Transactions in Medical Imaging  
 
Excellent progress with respect to Aim 3 has been made in the third year of the grant. 
 
The fourth Aim from the Statement of Work relates to a small scale clinical validation in collaboration 
with partially funded University of Virginia collaborator – Dr. Dan Theodorescu. In the third year of the 
grant we worked to resolve issues with obtaining a joint US DoD and UVA IRB approval. We believe that 
the protocol and patient consent forms are in order and are pending acceptance. We filed for a no cost 
extension to allow for completion of the proposed research – i.e. the small scale clinical validation. The 
small scale clinical validation and any subsequent report/ paper will probably mark the conclusion of the 
funded and reportable work in this grant. 
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KEY RESEARCH ACCOMPLISHMENTS 
• We have largely completed Aims 1, 2 and 3. Specifically, we have designed and had fabricated a 
very high resolution transrectal ultrasound transducer array for high resolution prostate imaging. 
• We have integrated the new transducer with an ultrasound scanner and an automated injection 
stage to realize an accurate elastographic imaging device. 
• We have tested the 3D and elastographic imaging capability of the transducer / scanner. 
• We have developed new ultrasound speckle reduction techniques suitable for prostate ultrasound  
• We have developed new ultrasound signal tracking techniques that improve the quality of 
ultrasound derived 3D measures of elastic anomaly as might be very useful in the more sensitive and 
more specific detection of prostate cancer.   
 
REPORTABLE OUTCOMES 
Y. Li, A. Patil and J. A. Hossack, “High resolution three-dimensional prostate ultrasound imaging”. 
Proc. SPIE Medical Imaging, San Diego, CA, 2006 
A. Patil, C. D. Garson, M. A. Oberhardt, P. C. Tay, and J. A. Hossack “3D Prostate Elastography: 
Simulations and Experiments” Proc. of the 2006 IEEE International Ultrasonics Symposium, 2006, 
P1230-1233 
A. Patil, C. D. Garson, M. A. Oberhardt, P. C. Tay, and J. A. Hossack “Multi-Resolution Hybrid Strain 
Estimator for Elastography” Proc. of the 2006 IEEE International Ultrasonics Symposium, 2006, 
P1258-1261 
P. C. Tay, S. T. Acton and J. A. Hossack, “A stochastic approach to ultrasound 
despeckling”, Proc. of the 2006 IEEE International Symposium for Biomedical Imaging: From 
Nana to Macro Arlington, VA, 2006, pp. 221-224  
P. C. Tay, S. T. Acton and J. A. Hossack, “Ultrasound Despeckling Using An Adaptive 
Window Stochastic Approach”, Proc. of the IEEE International Conference on Image 
Processing 2006, pp. 2549-2552 
P. C. Tay, S. T. Acton and J. A. Hossack, “An outlier removing signal reconstruction 
method”, under review at Elsevier DSP 
P. C. Tay, B. Li, C. D. Garson, S. T. Acton and J. A. Hossack, “Ultrasound despeckling for 3-
D segmentation”, under review at IEEE Transaction on Medical Imaging 
P. C. Tay, S. T. Acton and J. A. Hossack, “An outlier removing signal reconstruction 
method”, under review at Elsevier DSP 
P. C. Tay, B. Li, C. D. Garson, S. T. Acton and J. A. Hossack, “Ultrasound despeckling for 3-
D segmentation”, under review at IEEE Transaction on Medical Imaging 
 

 
CONCLUSIONS 

 
Our prostate imaging approach combines using an I-Beam transducer with 3D capability, 
elasticity imaging and test on a prototype using a prostate tissue-mimicking phantom. The 
prostate strain imaging performed here using a slightly inflated sheath over the transrectal 
transducer significantly enhanced tumor visibility (a hard inclusion in the phantom). (The lesion 
was nearly invisible in the regular B-mode image.) The I-Beam transducer enabled 
reconstruction of discrete 2D image acquisitions into regular 3D grid space, and thus the 
tumor was rendered in 3D. The volume calculated for this tumor had an error of approximately 
11% compared to the actual (independently determined) volume. Additionally, we have made 
significant progress in the area of image pre-processing (i.e. speckle reduction) and in image 
quantification (i.e. feature segmentation). These image processing contributions significantly 
enhance the practical utility of our technique since they hold the promise of accelerating the 
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prostate cancer diagnostic task and reducing intra and inter operator variability. Reducing 
variability has significance since serial analysis of cancer growth or remission is dependent on 
accurate and repeatable measures of prostate volume. Since we are able to measure volumes 
directly, rather than extrapolating volume from a length dimension or cross-sectional area, our 
image contributions are well-matched and complement our contributions in 3D and 
elastographic imaging. 

“So what? Section” 
Our improved prostate ultrasound imaging techniques have the potential to detect prostate 
cancer earlier and with more reliability (i.e. improved sensitivity and specificity). In this way, we 
believe that our research has a useful public health contribution.  
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